Monday, January 22, 2018

The Heart of Complexity

    Emergence is a theory that has very old roots, but is now being more carefully considered. The reasons why it is being reconsidered as a serious subtext to classical physics may have a lot to do with technical progress. Computer systems, and other man-made systems are rapidly gaining complexity.
    Complexity and emergence are considered to be highly related, especially in regards to complex adaptive systems. Given the fact that man-kind has proven to be easily fooled by low-level AI systems, it will be increasingly important to prove the validity of AI research by proving the system to be both adaptable and complex. Neural networks, which are currently the gold standard of AI research, have proven to be both.
     If you were to ask what powers the emergent properties of deep learning , the answer would undoubtedly be neural networks. These neural networks pattern data in way that could be roughly considered to be a form of learning. Pattern recognition is the technical term that is used, because both cognitive research and computing research built around interactions with humans have revealed that humans learn in much more complex ways. Some cognitive researchers suggest that there are many different modes of learning that humans utilize which are individually known as learning styles.
     In physics there is another way that emergence and complexity have served our understanding. Physical particles drive interactions in nature, but there are many natural phenomenon which outstrip the ability of individual particles. Mathematically, however, these phenomenon can be quantized into particle-like "chunks" of energy or information called quasiparticles. These quasiparticles are best understood as a complex emergent property of matter and energy that underlay sound, heat, electrical conduction, and many other important physical interactions.
     Regardless of its application, emergence is the heart of complexity. It is the prize that many scientific and engineering challenges of today are seeking. And it only seems natural that after over a hundred years of reductionist philosophy in science that revelations would come forth that many aspects of nature are more than a sum of their parts.

Quasiparticles and Emergence

ribbonfarm.com: quasiparticles and emergence

Saturday, January 13, 2018

Choosing a focal point.

     Life may seem random at times. Sometimes it actually is. Most of the time, however, the daily events of your life come from previous decisions. We work and rework old decisions until they become tired, exhausted, and miserable. Effective living comes from powerful and focused decisions.
     There are general rules to making decisions that help. No excuses; You cannot make excuses not to make any kind of basic change when you feel stagnation setting in. Appropriate decisions only: You must keep your focus only on changes that will positively affect your life (and those which you wish to include) in both the short and long terms. Weigh your options; Even with a stand out option, there are small changes to consider that make it far more doable and likely to happen. Keep moving forward; The best plans are those with contingencies attached, when the worst happens change course to make the best of it.
    Nobody leads the same life, so I won't tell you what life path to take. Work hard at making what's right for you take hold. Few things happen by themselves, and such things rarely lead to the places that focused effort does.
   Work hard for what you believe in, which should be yourself. When you work for others, make it work for you. This is the key to "engagement". A prize-winning worker is someone who feels a sense of accomplishment, and in so doing shines. Philosophy does count in technical work, as well as life. Strive to be your own hero, and in so doing you will improve the world.

Synthetic DNA is a New Hope for Alien Life on Earth

     So what is XNA (xeno nucleic acid)? DNA and RNA are formed of components known as nucleic acids. XNA is any of the chemical analogues r...